Evaluating feature-selection stability in next-generation proteomics

نویسندگان

  • Wilson Wen Bin Goh
  • Limsoon Wong
چکیده

Identifying reproducible yet relevant features is a major challenge in biological research. This is well documented in genomics data. Using a proposed set of three reliability benchmarks, we find that this issue exists also in proteomics for commonly used feature-selection methods, e.g. [Formula: see text]-test and recursive feature elimination. Moreover, due to high test variability, selecting the top proteins based on [Formula: see text]-value ranks - even when restricted to high-abundance proteins - does not improve reproducibility. Statistical testing based on networks are believed to be more robust, but this does not always hold true: The commonly used hypergeometric enrichment that tests for enrichment of protein subnets performs abysmally due to its dependence on unstable protein pre-selection steps. We demonstrate here for the first time the utility of a novel suite of network-based algorithms called ranked-based network algorithms (RBNAs) on proteomics. These have originally been introduced and tested extensively on genomics data. We show here that they are highly stable, reproducible and select relevant features when applied to proteomics data. It is also evident from these results that use of statistical feature testing on protein expression data should be executed with due caution. Careless use of networks does not resolve poor-performance issues, and can even mislead. We recommend augmenting statistical feature-selection methods with concurrent analysis on stability and reproducibility to improve the quality of the selected features prior to experimental validation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Hybrid Feature Subset Selection Algorithm for the Analysis of Ovarian Cancer Data Using Laser Mass Spectrum

Introduction: Amajor problem in the treatment of cancer is the lack of an appropriate method for the early diagnosis of the disease. The chemical reaction within an organ may be reflected in the form of proteomic patterns in the serum, sputum, or urine. Laser mass spectrometry is a valuable tool for extracting the proteomic patterns from biological samples. A major challenge in extracting such ...

متن کامل

Under-Updated Particle Swarm Optimization for Small Feature Selection Subsets from Large-Scale Datasets

Feature selection is the process of choosing a subset of features from the original larger set that are related to a certain outcome, such as disease type, dose, income, and time to event. The use of feature selection procedures is almost compulsory and complex in biology and medicine because the generation of massive datasets is nowadays common for many stateof-the-art technologies such as tra...

متن کامل

A Real-Time Electroencephalography Classification in Emotion Assessment Based on Synthetic Statistical-Frequency Feature Extraction and Feature Selection

Purpose: To assess three main emotions (happy, sad and calm) by various classifiers, using appropriate feature extraction and feature selection. Materials and Methods: In this study a combination of Power Spectral Density and a series of statistical features are proposed as statistical-frequency features. Next, a feature selection method from pattern recognition (PR) Tools is presented to e...

متن کامل

Stability of Feature Ranking Algorithms on Binary Data

Stability or robustness is a crucial yardstick for analyzing and evaluating feature selection algorithms which have become indispensible due to unprecedented advancements in knowledge data discovery and management. Stability of feature selection algorithms is taken as the insensitivity of the algorithm to perturbations in the training data with reference to the performance of the algorithm with...

متن کامل

Neuro-Fuzzy Based Algorithm for Online Dynamic Voltage Stability Status Prediction Using Wide-Area Phasor Measurements

In this paper, a novel neuro-fuzzy based method combined with a feature selection technique is proposed for online dynamic voltage stability status prediction of power system. This technique uses synchronized phasors measured by phasor measurement units (PMUs) in a wide-area measurement system. In order to minimize the number of neuro-fuzzy inputs, training time and complication of neuro-fuzzy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bioinformatics and computational biology

دوره 14 5  شماره 

صفحات  -

تاریخ انتشار 2016